
An Efficient Branch-and-Bound Algorithm

for Finding a Maximum Clique�

Etsuji Tomita and Tomokazu Seki

The Graduate School of Electro-Communications
The University of Electro-Communications

Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
{tomita,seki-t}@ice.uec.ac.jp

Abstract. We present an exact and efficient branch-and-bound algo-
rithm for finding a maximum clique in an arbitrary graph. The algorithm
is not specialized for any particular kind of graph. It employs approxi-
mate coloring and appropriate sorting of vertices to get an upper bound
on the size of a maximum clique. We demonstrate by computational ex-
periments on random graphs with up to 15,000 vertices and on DIMACS
benchmark graphs that our algorithm remarkably outperforms other ex-
isting algorithms in general. It has been successfully applied to interest-
ing problems in bioinformatics, image processing, the design of quantum
circuits, and the design of DNA and RNA sequences for bio-molecular
computation.

1 Introduction

Given an undirected graph G, a clique is a subgraph of G in which all the pairs
of vertices are adjacent. Finding a maximum clique in a graph is one of the most
important NP-hard problems in discrete mathematics and theoretical computer
science and has been studied by many researchers. Pardalos and Xue [13] and
Bomze et al. [4] give excellent surveys on this problem together with quite many
references. See also Chapter 7: Selected Applications in [4] for applications of
maximum clique algorithms.

One standard approach for finding a maximum clique is based on the branch-
and-bound method. Several branch-and-bound algorithms use approximate col-
oring to get an upper bound on the size of a maximum clique. Elaborate coloring
can greatly reduce the search space. Coloring, however, is time consuming, and
it becomes important to choose the proper trade-off between the time needed for
approximate coloring and the reduction of the search space thereby obtained.
Many efforts have been made along this line, see Bomze et al. [4]. Quite recently,

� This work is partially supported by Grant-in-Aid for Scientific Research No.13680435
from MESSC of Japan and Research Fund of the University of Electro-
Communications. It is also given a grant by Funai Foundation for Information Tech-
nology.

C.S. Calude et al. (Eds.): DMTCS 2003, LNCS 2731, pp. 278–289, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique 279

Österg̊ard [12] proposed a new maximum-clique algorithm, supported by compu-
tational experiments. Sewell [15] presents a maximum-clique algorithm designed
for dense graphs.

In this paper, we present a branch-and-bound algorithm, MCQ, for finding
a maximum clique based on approximate coloring and appropriate sorting of
the vertices. We experimentally compare MCQ with other algorithms, especially
that of Österg̊ard [12]. The experimental results show that our algorithm is very
effective and fast for many random graphs and DIMACS benchmark graphs.
Tested graphs include large random graphs with up to 15,000 vertices. Such
results are important for practical use [2]. A preliminary version of this paper was
given in [14], and the algorithm has yielded interesting results in bioinformatics
[2] and other areas [8,11,10].

2 Preliminaries

[1] Throughout this paper, we are concerned with a simple undirected graph
G = (V,E) with a finite set V of vertices and a finite set E of unordered pairs
(v, w) of distinct vertices, called edges. The set V of vertices is considered to be
ordered, and the i-th element in V is denoted by V [i]. A pair of vertices v and
w are said to be adjacent if (v, w) ∈ E. [2] For a vertex v ∈ V , let Γ (v) be the
set of all vertices which are adjacent to v in G = (V,E), i.e.,

Γ (v) = {w ∈ V |(v, w) ∈ E} (�/ v).

We call |Γ (v)|, the number of vertices adjacent to a vertex v, the degree of v. In
general, for a set S, the number of its elements is denoted by |S|.

The maximum degree in graphG is denoted by∆(G). [3] For a subsetW ⊆ V
of vertices, G(W) = (W,E(W)) with E(W) = {(v, w) ∈ W ×W |(v, w) ∈ E} is
called a subgraph of G = (V,E) induced by W . [4] Given a subset Q ⊆ V of
vertices, the induced subgraph G(Q) is said to be a clique if (v, w) ∈ E for all
v, w ∈ Q with v �= w. If this is the case, we may simply say that Q is a clique.
In particular, a clique of the maximum size is called a maximum clique. The
number of vertices of a maximum clique in graph G = (V,E) is denoted by ω(G)
or ω(V).

A subset W ⊆ V of vertices is said to be independent if (v, w) /∈ E for all
v, w ∈W .

3 Maximum Clique Algorithm MCQ

Our maximum clique algorithm MCQ is shown in Figures 1, 2 and 3. In the
following subsections we explain the basic approach and the motivations for our
heuristics.

280 Etsuji Tomita and Tomokazu Seki

procedure MCQ (G = (V, E))
begin

global Q := ∅;
global Qmax := ∅;
Sort vertices of V in a descending order

with respect to their degrees;
for i := 1 to ∆(G)

do N [V [i]] := i od
for i := ∆(G) + 1 to |V |

do N [V [i]] := ∆(G) + 1 od
EXPAND(V,N);
output Qmax

end {of MCQ }

Fig.1. Algorithm MCQ

procedure EXPAND(R,N)
begin

while R �= ∅ do
p := the vertex in R such that N [p] = Max{N [q] | q ∈ R};

{i.e., the last vertex in R}
if |Q|+ N [p] > |Qmax| then

Q := Q ∪ {p};
Rp := R ∩ Γ (p);
if Rp �= ∅ then

NUMBER-SORT(Rp, N
′);

{the initial value of N ′ has no significance}
EXPAND(Rp, N

′)
else if |Q| > |Qmax| then Qmax := Q fi
fi
Q := Q − {p}
else return

fi
R := R − {p}

od
end {of EXPAND}

Fig.2. EXPAND

3.1 A Basic Algorithm

Our algorithm begins with a small clique, and continues finding larger and larger
cliques until one is found that can be verified to have the maximum size. More
precisely, we maintain global variables Q, Qmax, where Q consists of vertices of
a current clique, Qmax consists of vertices of the largest clique found so far. Let
R ⊆ V consist of vertices (candidates) which may be added to Q. We begin the
algorithm by letting Q := ∅, Qmax := ∅, and R := V (the set of all vertices).
We select a certain vertex p from R and add p to Q (Q := Q ∪ {p}). Then we

An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique 281

compute Rp := R ∩ Γ (p) as the new set of candidate vertices. This procedure
(EXPAND) is applied recursively, while Rp �= ∅.

When Rp = ∅ is reached, Q constitutes a maximal clique. If Q is maximal
and |Q| > |Qmax| holds, Qmax is replaced by Q. We then backtrack by removing
p from Q and R. We select a new vertex p from the resulting R and continue the
same procedure until R = ∅. This is a well known basic algorithm for finding a
maximum clique (see, for example, [7]).

3.2 Pruning

Now, in order to prune unnecessary searching, we make use of approximate
coloring of vertices as introduced by Fujii and Tomita [7] and Tomita et al.[16].
We assign in advance for each p ∈ R a positive integer N [p] called the Number
or Color of p with the following property:

(i) If (p, r) ∈ E then N [p] �= N [r], and
(ii) N [p] = 1, or if N [p] = k > 1, then there exist vertices
p1 ∈ Γ (p), p2 ∈ Γ (p), . . . , pk−1 ∈ Γ (p) in R with
N [p1] = 1, N [p2] = 2, . . . , N [pk−1] = k − 1.

Consequently, we know that

ω(R) ≤ Max{N [p]|p ∈ R},

and hence if |Q|+Max{N [p]|p ∈ R} ≤ |Qmax| holds then we can disregard such
R.

The value N [p] for every p ∈ R can be easily assigned step by step by
a so-called greedy coloring algorithm as follows: Assume the vertices in R =
{p1, p2, . . . , pm} are arranged in this order. First let N [p1] = 1. Subsequently, let
N [p2] = 2 if p2 ∈ Γ (p1) else N [p1] = 1, . . ., and so on. After Numbers are as-
signed to all vertices in R, we sort these vertices in ascending order with respect
to their Numbers. We call this numbering and sorting procedure NUMBER-
SORT. See Figure 3 for details of Procedure NUMBER-SORT. This procedure
runs in O(|R|2) time. Note that the quality of such sequential coloring depends
heavily on how the vertices are ordered. Therefore, the SORT portion of the
NUMBER-SORT procedure is important. Then we consider a simple and effec-
tive sorting procedure as follows.

Let Max{N [r]|r ∈ R} = maxno,

Ci={r ∈ R|N [r] = i}, i = 1, 2, . . . ,maxno,

and
R = C1 ∪ C2 ∪ . . . ∪ Cmaxno,

where vertices in R are ordered in such a way that the vertices in C1 appear

282 Etsuji Tomita and Tomokazu Seki

procedure NUMBER-SORT(R,N)
begin
{NUMBER}

maxno := 1;
C1 := ∅; C2 := ∅;
while R �= ∅ do

p := the first vertex in R;
k := 1;
while Ck ∩ Γ (p) �= ∅

do k := k + 1 od
if k > maxno then

maxno := k;
Cmaxno+1 := ∅

fi
N [p] := k;
Ck := Ck ∪ {p};
R := R − {p}

od
{SORT}

i := 1;
for k := 1 to maxno do

for j := 1 to |Ck| do
R[i] := Ck[j];
i := i + 1

od
od

end {of NUMBER-SORT}

Fig.3. NUMBER-SORT

first in the same order as in C1, and then vertices in C2 follow in the same way,
and so on.

Then let
C′

i = Ci ∩ Γ (p), i = 1, 2, . . . ,maxno,

for some p ∈ R, and we have that

Rp = R ∩ Γ (p) = C′
1 ∪ C′

2 ∪ . . . ∪ C′
maxno,

where vertices in Rp are ordered as described above. Both of Ci and C′
i are in-

dependent sets, and C′
i ⊆ Ci, for i = 1, 2, . . . ,maxno. Then it is clear that the

maximum Number (Color) needed for coloring C′
i is less than or equal to that

needed for Ci. This means that the above coloring is steadily improved step by
step owing to the procedure NUMBER-SORT. In addition, it should be strongly
noted that the latter part {SORT} in Fig.3 takes only O(|R|) time.

A more elaborate coloring can be more effective in reducing the total search
space, but our preliminary computational experiments indicate that elaborate

An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique 283

coloring schemes take so much more time to compute that they have an overall
negative effect on performance.

In procedure EXPAND(R,N), after applying NUMBER-SORT more than
once, a maximum clique contains a vertex p in R such that N [p] ≥ ω(R). It
is generally expected that a vertex p in R such that N [p] = Max{N [q]|q ∈ R}
has high probability of belonging to a maximum clique. Accordingly, we select a
vertex p in R such thatN [p] = Max{N [q]|q ∈ R} as described at the beginning of
while loop in EXPAND(R,N). Here, a vertex p such that N [p] = Max{N [q]|q ∈
R} is the last element in the ordered set R of vertices after the application of
NUMBER-SORT. Therefore, we simply select the rightmost vertex p in R while
R �= ∅. Consequently, vertices in R are searched from the last (right) to the first
(left).

3.3 Initial Sorting and Simple Numbering

Fujii and Tomita [7] have shown that both search space and overall running
time are reduced when one sorts the vertices in an ascending order with respect
to their degrees prior to the application of a branch-and-bound algorithm for
finding a maximum clique. Carraghan and Pardalos [6] also employ a similar
technique successfully. Therefore, at the beginning of our algorithm, we sort
vertices in V in a descending order with respect to their degrees. This means
that a vertex with the minimum degree is selected at the beginning of the while
loop in EXPAND(V,N) since the selection there is from right to left.

Furthermore, we initially assign Numbers to the vertices in R simply so that
N [V [i]] = i for i ≤ ∆(G), and N [V [i]] = ∆(G) + 1 for ∆(G) + 1 ≤ i ≤ |V |. This
initial Number has the desired property that in EXPAND(V,N), N [p] ≥ ω(V)
for any p in V while V �= ∅. Thus, this simple initial Number suffices.

This completes our explanation of the MCQ algorithm shown in Figures 1, 2
and 3. Note that the rather time-consuming calculation of the degree of vertices
is carried out only at the beginning of MCQ and nowhere in NUMBER-SORT.
Therefore, the total time needed to reduce the search space can be very small.
It should be also noted that the initial order of vertices in our algorithm is
effective for the reduction of the search space as described at the beginning of
this subsection. And it is also true in the following subproblems. This is because
the initial order of vertices in the same Number is inherited in the following
subproblems owing to the way of NUMBER-SORT.

4 Computational Experiments

We have implemented the algorithm MCQ in the language C and carried out
computational experiments to evaluate it. The computer used has a Pentium4
2.20GHz CPU and a Linux operating system. See Appendix for details. Here,
benchmark program dfmax given by Applegate and Johnson (see Johnson and
Trick [9]) is used to obtain user time[sec] to solve the given five benchmark
instances.

284 Etsuji Tomita and Tomokazu Seki

Table 1. CPU time [sec] for random graphs

Graph dfmax MCQ New COCR

n p ω [9] [12] [15]

0.5 9-10 0.0019 0.0009 0.13
0.6 11-13 0.0061 0.0026 0.0035 0.14
0.7 14-16 0.0286 0.0070 0.011 0.18100
0.8 19-21 0.22 0.026 0.10 0.24
0.9 29-32 5.97 0.066 1.04 0.31
0.95 39-46 40.94 0.0023 0.31

0.7 16-18 0.57 0.12 0.53
0.8 23 11.23 0.93 1.18150
0.9 36-39 1,743.7 9.57 1.83
0.95 50-57 61,118.8 4.03

0.4 9 0.012 0.0061 0.011
0.5 11-12 0.058 0.025 0.03 0.40

200 0.6 14 0.46 0.14 0.27 0.82
0.7 18-19 6.18 1.13 4.75 2.59
0.8 24-27 314.92 20.19 231.54 13.66

0.4 9-10 0.078 0.038 0.074
0.5 12-13 0.59 0.24 0.32 1.78300
0.6 15-16 7.83 2.28 5.50 7.83
0.7 19-21 233.69 37.12 179.71
0.2 7 0.018 0.012 0.03
0.3 8-9 0.13 0.067 0.13

500 0.4 11 1.02 0.48 0.94
0.5 13-14 14.45 5.40 11.40 27.41
0.6 17 399.22 96.34 288.10
0.2 7-8 0.24 0.18 0.33
0.3 9-10 3.09 1.85 2.581,000
0.4 12 51.92 22.98 36.46
0.5 15 1,766.85 576.36

0.1 7 13.51 11.60
5,000 0.2 9 531.65 426.38

0.3 12 28,315.34 18,726.21

0.1 7 256.43 185.9910,000
0.2 10 23,044.55 16,967.60

15,000 0.1 8 1,354.64 876.65

4.1 Results for Random Graphs

Prior to the present work, it was confirmed that an earlier version of MCQ
was faster than Balas and Yu [1]’s algorithm by computational experiments for
random graphs [16].

Now for each pair of n (the number of vertices) up to 15,000 and p (edge
probability) in Table 1, random graphs are generated so that there exists an edge
for each pair of vertices with probability p. Then average CPU time [seconds]
required to solve these graphs by dfmax and MCQ are listed in Table 1. The
averages are taken for 10 random graphs for each pair of n and p. The exceptions
are for n ≥ 5, 000, where each CPU time is for one graph with the given n and
p. In addition, CPU times by New in Österg̊ard [12] and COCR in Sewell [15]
are added to Table 1, where each CPU time is adjusted according to the ratio

An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique 285

Table 2. Branches for random graphs

Graph dfmax MCQ COCR

n p ω [9] [15]

0.5 9-10 3,116 418 256
0.6 11-13 11,708 942 390
0.7 14-16 61,547 2,413 763100
0.8 19-21 486,742 6,987 894
0.9 29-32 13,618,587 10,854 343
0.95 39-46 86,439,090 2,618

0.8 23 21,234,191 173,919 19,754
150 0.9 36-39 2,453,082,795 1,046,341 17,735

0.95 50-57 > 4.29× 109 273,581

0.5 11-12 85,899 7,900 4,500
0.6 14 728,151 38,378 16,747200
0.7 18-19 10,186,589 233,495 62,708
0.8 24-27 542,315,390 3,121,043 260,473

0.5 12-13 758,484 56,912 36,622300
0.6 15-16 10,978,531 473,629 197,937
0.3 8-9 131,196 18,829
0.4 11 1,148,304 124,059500
0.5 13-14 16,946,013 1,124,109 582,631
0.6 17 469,171,354 16,062,634

0.2 7-8 211,337 43,380
0.3 9-10 2,989,296 463,5361,000
0.4 12 50,154,790 4,413,740
0.5 15 1,712,895,181 89,634,336

0.1 7 1,763,294 539,549
5,000 0.2 9 158,904,545 31,785,500

0.3 12 3,013,993,714 1,303,729,211
0.1 7 35,158,358 5,718.03010,000
0.2 10 481,284,721 588,220,975

15,000 0.1 8 158,776,693 22,196,166

given in Appendix. Bold faced entries are the ones that are fastest in the same
row.

For random graphs in this Table, MCQ is fastest except for the cases where
[n = 150, p = 0.9] and [n = 200, p = 0.8]. In these cases, COCR is fastest. COCR
is specially designed for solving the maximum clique problem in dense graphs.
Now we let Branches mean the total number of EXPAND() calls excluding the
one at the beginning. Hence, Branches correspond to an extent of the search
space. A part of the associated Branches by dfmax and MCQ is listed in Table
2 together with the corresponding values by COCR which is cited from [15].

Together, Tables 1 and 2 show that MCQ is successful in general for obtaining
a good trade-off between the increase in time and the reduction of the search
space associated with approximate coloring.

Up to the present, it is widely recognized that dfmax is the fastest maximum-
clique algorithm for sparse graphs [12]. Table 1, however, shows that MCQ is
faster than dfmax for all graphs tested, including very sparse graphs. It is to be
noted that MCQ is much faster than dfmax when the number of vertices is very
large, even for sparse graphs.

286 Etsuji Tomita and Tomokazu Seki

Table 3. CPU time [sec] for DIMACS benchmark graphs

In each row, the fastest entry is bold faced, italicized, underlined, 	 marked,	 	 marked, and
	 	 	 marked if it is more than 2, 10, 20, 100, 400, and at least 2,000 times faster than or equal to
the second fastest one, respectively. The other fastest entries are ◦ marked.

Graph dfmax MCQ New MIPO SQUEEZE
Name n Density ω [9] [12] [3] [5]
brock200 1 200 0.745 21 23.96 2.84 19.05 1,471.0
brock200 2 200 0.496 12 0.05 ◦ 0.016 0.018 847.3 60.4
brock200 3 200 0.605 15 0.35 ◦ 0.09 0.15 194.5
brock200 4 200 0.658 17 1.47 ◦ 0.32 0.34 419.1
c-fat200-1 200 0.077 12 ◦ 0.00016 0.00024 0.0035 22.1 3.21
c-fat200-2 200 0.163 24 ◦ 0.0003 0.0005 0.0035 11.2 2.78
c-fat200-5 200 0.426 58 444.03 		 0.0021 2.74 60.5 1.74
c-fat500-1 500 0.036 14 ◦ 0.0010 0.0011 0.025 51.2
c-fat500-2 500 0.073 26 ◦ 0.0011 0.0018 0.028 90.7
c-fat500-5 500 0.186 64 2.73 		 0.0061 3,664.16 49.5
c-fat500-10 500 0.374 126 >24hrs. 0.0355 ◦ 0.025 36.3
hamming6-2 64 0.905 32 0.0175 0.0003 0.0035 0.004
hamming6-4 64 0.349 4 0.00015 ◦ 0.00010 0.0035 0.48 0.09
hamming8-2 256 0.969 128 >24hrs. 0.0205 ◦ 0.014 0.05
hamming8-4 256 0.639 16 3.07 0.34 ◦ 0.30 1,289.5
hamming10-2 1,024 0.990 512 >24hrs. 1.82 ◦ 0.88 0.96
johnson8-2-4 28 0.556 4 0.000050 0.000022 0.0035 0.0003
johnson8-4-4 70 0.768 14 0.0071 0.0009 0.0035 0.004 0.35
johnson16-2-4 120 0.765 8 1.21 0.34 0.095 0.003 777.2
MANN a9 45 0.927 16 0.062 0.0002 0.0035
MANN a27 378 0.990 126 >24hrs. 	 8.49 >3,500 1,524.2

keller4 171 0.649 11 0.62 0.0450 0.175 184.6 236.8
p hat300-1 300 0.244 8 0.008 ◦ 0.0053 0.014 1,482.8 169.1
p hat300-2 300 0.489 25 1.04 0.08 0.35 360.9
p hat300-3 300 0.744 36 1,285.91 26.49 8,201.1

p hat500-1 500 0.253 9 0.09 0.04 0.102 1,728.9
p hat500-2 500 0.505 36 219.37 6.22 150.5 5,330.7
p hat700-1 700 0.249 11 0.32 ◦ 0.16 0.24 >2hrs.
p hat1000-1 1,000 0.245 10 1.66 ◦ 0.86 2.05
p hat1500-1 1,500 0.253 12 15.57 7.40
san200 0.7 1 200 0.700 30 4,181.46 0.0169 0.20 0.33 310.9
san200 0.7 2 200 0.700 18 26,878.56 ◦ 0.0106 0.014 8.47 >2hrs.
san200 0.9 1 200 0.900 70 >24hrs. 2.30 0.095 ◦ 0.08 0.43
san200 0.9 2 200 0.900 60 >24hrs. 3.49 1.50 0.24 12.6
san200 0.9 3 200 0.900 44 >24hrs. ◦ 16.41 23.60 430.7
san400 0.5 1 400 0.500 13 719.16 0.041 0.011 133.15
san400 0.7 1 400 0.700 40 >24hrs. 	 	 	 1.72 >3,500

san400 0.7 2 400 0.700 30 >24hrs. 	 1.58 177.6 786.8
san400 0.9 1 400 0.900 100 >24hrs. 72.69 3,239.8

san1000 1,000 0.502 15 >24hrs. 10.06 0.18
sanr200 0.7 200 0.702 18 5.02 0.92 4.95 318.0
sanr400 0.5 400 0.501 13 3.50 ◦ 1.47 2.32

4.2 Results for DIMACS Benchmark Graphs

Table 3 lists the CPU times required by dfmax and MCQ to solve DIMACS
benchmark graphs given in Johnson and Trick [9]. In addition, CPU times by
New [12], MIPO in Balas et al. [3], and SQUEEZE in Bourjolly et al. [5] are
added to Table 3, where each CPU time is adjusted according to the ratio given
in Appendix.

The results in Table 3 show that MCQ is faster than dfmax except for only
very “small” graphs which MCQ needs less than 0.0025 seconds to solve.

An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique 287

MCQ is also faster than New [12] except for several graphs. For a more
detailed comparison of MCQ vs. New [12], we note that MCQ is more than 10
times faster than New [12] for 14 graphs, while New [12] is more than 10 times
faster than MCQ for only 2 graphs in Table 3. In addition, MCQ is more than 100
times faster than New [12] for 5 graphs, while New [12] is more than 100 times
faster than MCQ for no graph in Table 3. In particular,MCQ is more than 1,000
times faster than New [12] for 4 of them. As for COCR [15], the comparison in
Table 3 of Österg̊ad [12] shows that New [12] is faster than COCR [15] except for
MANN a27. The adjusted CPU time of COCR for MANN a27 is 4.33 seconds
which is shorter than any entry in our Table 2. Note here that the edge density
of MANN a27 is 0.99 and is very high. (For Wood [17], see Table 2 of Österg̊ad
[12] for reference.)

MCQ is faster than MIPO [3] except for instances of johnson16-2-4,
san200 0.9 1, and san200 0.9 2 in Table 3, where the reason for these exceptions
are not clear. MCQ is faster than SQUEEZE [5] for all instances in Table 3.

Note here that MCQ is more than 100 times faster than all the other algo-
rithms to solve 5 instances in Table 3.

Summarizing the results in Sections 4.1 and 4.2, we can regard that MCQ re-
markably outperforms other algorithms cited here in general.

5 Conclusions

We have shown that our pruning technique by NUMBER-SORT based upon
greedy coloring is very effective and hence algorithm MCQ outperforms other
algorithms in general. We have also shown experimental results for large random
graphs with up to 15,000 vertices which becomes important for practical use.
If we use more elaborate coloring, we can increase the performance for dense
graphs but with possible deterioration for sparse graphs as in Sewell [15]. High
performance of MCQ comes from its simplicity, especially from the simplicity
of NUMBER-SORT together with the appropriate initial sorting and simple
Numbering of vertices.

Our algorithm MCQ has already been successfully applied to solve some
interesting problems in bioinformatics by Bahadur et al. [2], image processing
by Hotta et al. [8], the design of quantum circuits by Nakui et al. [11], the design
of DNA and RNA sequences for bio-molecular computation by Kobayashi et al.
[10].

Acknowledgement

The authors would like to express their gratitude to T. Fujii, Y. Kohata, and H.
Takahashi for their contributions in an early stage of this work. Useful discus-
sions with T.Akutsu and J.Tarui are also acknowledged. Many helpful detailed
comments by E. Harley are especially appreciated.

288 Etsuji Tomita and Tomokazu Seki

References

1. E. Balas and C.S. Yu: “Finding a maximum clique in an arbitrary graph,” SIAM
J. Comput. 15, pp.1054-1068 (1986).

2. D. Bahadur K.C., T. Akutsu, E. Tomita, T. Seki, and A. Fujiyama: “Point match-
ing under non-uniform distortions and protein side chain packing based on efficient
maximum clique algorithms,” Genome Informatics 13, pp.143-152 (2002).

3. E. Balas, S. Ceria, G. Cornuéjols, and G. Pataki: “Polyhedral methods for the
maximum clique problem,” pp.11-28 in [9] (1996).

4. I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo: “The Maximum Clique
Problem.” In: D.-Z. Du and P.M. Pardalos (Eds.), Handbook of Combinatorial
Optimization, Supplement vol. A, Kluwer Academic Publishers, pp.1-74 (1999).

5. J.-M. Bourjolly, P. Gill, G. Laporte, and H. Mercure: “An exact quadratic 0-1
algorithm for the stable set problem,” pp.53-73 in [9] (1996).

6. R. Carraghan and P.M. Pardalos: “An exact algorithm for the maximum clique
problem,” Oper. Res. Lett. 9, pp.375-382 (1990).

7. T. Fujii and E. Tomita: “On efficient algorithms for finding a maximum clique ,”
Technical Report of IECE (in Japanese), AL81-113, pp.25-34 (1982).

8. K. Hotta, E. Tomita, T. Seki, and H. Takahashi: “Object detection method based
on maximum cliques,” Technical Report of IPSJ (in Japanese), 2002-MPS-42,
pp.49-56 (2002).

9. D. S. Johnson and M. A. Trick, (Eds.): “Cliques, Coloring, and Satisfiability,” DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, vol.26,
American Mathematical Society (1996).

10. S. Kobayashi, T. Kondo, K. Okuda, and E. Tomita: “Extracting globally structure
free sequences by local structure freeness,” Technical Report CS 03-01, Dept. of
Computer Science, Univ. of Electro-Communications (2003).

11. Y. Nakui, T. Nishino, E. Tomita, and T. Nakamura:“ On the minimization of the
quantum circuit depth based on a maximum clique with maximum vertex weight,”
Technical Report of Winter LA Symposium 2002, pp.9.1-9.7 (2003).

12. P.R.J. Österg̊ard: “A fast algorithm for the maximum clique problem,” Discrete
Appl. Math. 120, pp.197-207 (2002).

13. P.M. Pardalos and J. Xue: “The maximum clique problem,”J. Global Optimization
4, pp. 301-328 (1994).

14. T. Seki and E. Tomita: “Efficient branch-and-bound algorithms for finding a max-
imum clique,” Technical Report of IEICE (in Japanese), COMP 2001-50, pp.101-
108 (2001).

15. E.C. Sewell: “A branch and bound algorithm for the stability number of a sparse
graph,” INFORMS J. Comput. 10, pp.438-447 (1998).

16. E. Tomita, Y. Kohata, and H. Takahashi: “A simple algorithm for finding a maxi-
mum clique,” Techical Report UEC-TR-C5, Dept. of Communications and Systems
Engineering, Univ. of Electro communications (1988).

17. D. R. Wood: “An algorithm for finding a maximum clique in a graph,” Oper. Res.
Lett. 21, pp.211-217 (1997).

An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique 289

Appendix – Clique Benchmark Results

Type of Machine: Pentium4 2.20GHz
Compiler and flags used: gcc -O2
MACHINE BENCHMARKS

Our user time for instances:
Graph: r100.5 r200.5 r300.5 r400.5 r500.5

T1 : 2.13×10−3 6.35×10−2 0.562 3.48 13.3

Österg̊ard[12]’s user time for instances:
T2 : 0.01 0.23 1.52 10.08 39.41

Ratio T2/T1 : 4.69 3.62 2.70 2.89 2.56
Sewell[15]’s user time for instances:

T3 : 0.14 3.64 31.10 191.98 734.99
Ratio T3/T1 : 65.73 57.32 55.34 55.06 55.11

For Österg̊ard [12]’s user time for in instances[T2] and Sewell [15]’s user time
for instances[T3], excluding the values of T2/T1 and T3/T1 for r100.5 and r200.5
since these instances are too small, the average value of T2/T1 = 2.85 and that
of T3/T1 = 55.2. For Balas et al. [3]’s user time for instances (T4) and Bourjolly
et al. [5]’s user time for instances (T5), the average value of T4/T1 = 33.0 and
that of T5/T1 = 11.5, excluding the values T4/T1 and T5/T1 for r100.5 for the
same reason as above.

	Introduction
	Preliminaries
	Maximum Clique Algorithm MCQ
	A Basic Algorithm
	Pruning
	Initial Sorting and Simple Numbering

	Computational Experiments
	Results for Random Graphs
	Results for DIMACS Benchmark Graphs

	Conclusions

