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Abstract. This paper proposes new approximate coloring and other
related techniques which markedly improve the run time of the branch-
and-bound algorithm MCR (J. Global Optim., 37, 95–111, 2007), pre-
viously shown to be the fastest maximum-clique-finding algorithm for a
large number of graphs. The algorithm obtained by introducing these
new techniques in MCR is named MCS. It is shown that MCS is suc-
cessful in reducing the search space quite efficiently with low overhead.
Consequently, it is shown by extensive computational experiments that
MCS is remarkably faster than MCR and other existing algorithms. It
is faster than the other algorithms by an order of magnitude for several
graphs. In particular, it is faster than MCR for difficult graphs of very
high density and for very large and sparse graphs, even though MCS is
not designed for any particular type of graphs. MCS can be faster than
MCR by a factor of more than 100,000 for some extremely dense random
graphs.

1 Introduction

A clique is a subgraph in which all pairs of vertices are adjacent to each other.
Finding a maximum clique in a graph is an NP-hard problem, and it is difficult
to obtain the exact solution efficiently [3]. It is also difficult to obtain even a
satisfactory approximate solution [12]. Nevertheless, many practical problems
can be formulated as maximum clique problems (e.g., see [3], [6], [1], [5], [15],
and others). Therefore, it is required to develop exact maximum-clique-finding
algorithms that run very fast in practice.
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One standard approach to develop a fast algorithm is based on the branch-
and-bound method, where the focus is on reducing the search space efficiently
with low overhead. We developed a simple branch-and-bound algorithm that is
referred to as MCR [23]; that was successful in reducing the search space with
low overhead.

Here, simplicity is very important to make the overhead as low as possible. It
was shown in computational experiments that MCR clearly outperformed other
existing algorithms in finding a maximum clique. However, it is not sufficiently
fast to solve large practical problems. Hence, much faster algorithms are still in
great demand.

In this paper, we propose a new approximate coloring that can play a crucial
role in the branch-and-bound algorithm. Subsequently, we introduce a new ad-
junct ordered set of vertices for approximate coloring. Following this ordered set
of vertices, we present a new technique for reconstructing the adjacency matrix
of a graph. The algorithm that is obtained by introducing these new techniques
in MCR is named MCS. While MCS inherits the simplicity of MCR to a large
extent, MCS is much more successful in reducing the search space quite effi-
ciently. The main difference between the search spaces of MCR and MCS lies
in the new approximate coloring together with the adjunct ordered set of ver-
tices introduced in MCS. The resulting overhead in MCS is still low due to the
simplicity of the newly introduced techniques. Consequently, extensive compu-
tational experiments have shown that MCS is remarkably faster than MCR and
other algorithms. MCS is faster than other algorithms by an order of magnitude
for several graphs. In particular, it is faster than MCR for difficult graphs with
very high density and for very large and sparse graphs, even though MCS is not
designed for any particular type of graphs.

MCR is only briefly described in Sect. 3 due to the page limitation, and the
reader is advised to refer to [23] for further details.

2 Definitions and Notation

(1) We consider a simple undirected graph G = (V, E) with a finite set V of
vertices and a finite set E of edges that comprises unordered pairs (v, w)(=
(w, v)) of distinct vertices. The set V of vertices is considered to be ordered,
and the i-th element in it is denoted by V [i]. A pair of vertices v and w are
said to be adjacent if (v, w) ∈ E.

(2) For a vertex v ∈ V , let Γ (v) be the set of all vertices that are adjacent to v
in G = (V, E), i.e., Γ (v) = {w ∈ V |(v, w) ∈ E}. We call |Γ (v)| the degree of
v. Here, the number of elements in a set S is denoted by |S|.

(3) For a subset R ⊆ V of vertices, G(R) = (R, E ∩ (R × R)) is an induced
subgraph. An induced subgraph G(Q) is said to be a clique if (v, w) ∈ E
for all v, w ∈ Q ⊆ V , with v �= w. In this case, we may simply say that Q
is a clique. The largest clique in a graph is called a maximum clique, and
the number of vertices in a maximum clique in an induced subgraph G(R)
is denoted by ω(R).
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3 Maximum Clique Algorithm MCR

3.1 Branch-and-Bound Algorithm

The basic branch-and-bound algorithm MCR [23] begins with a small clique and
continues finding larger and larger cliques until one is found that can be verified
to have the maximum size. To be more precise, we maintain global variables
Q and Qmax, where Q consists of the vertices of the current clique and Qmax

consists of the vertices of the largest clique found so far. Let R ⊆ V consist of
vertices (candidates) that may be added to Q. We begin the algorithm by letting
Q := ∅, Qmax := ∅, and R := V (the set of all vertices). We select a certain
vertex p from R, add it to Q (Q := Q∪ {p}), and then compute Rp := R∩Γ (p)
as the new set of candidate vertices. This procedure is applied recursively while
Rp �= ∅.

When Rp = ∅ is reached, Q constitutes a maximal clique. If Q is maximal and
|Q| > |Qmax| holds, we replace Qmax by Q. We then backtrack by removing p
from Q and R. We select a new vertex p from the resulting R and continue the
same procedure until R = ∅.

3.2 Greedy Approximate Coloring
In order to prune unnecessary searching, we used greedy approximate coloring
of the vertices in MCR. That is, each p ∈ R is sequentially assigned a minimum
possible positive integer value No[p], called the Number or Color of p, such that
No[p] �= No[r] if (p, r) ∈ E. Consequently, we have that ω(R) ≤ Max{No[p]|p ∈
R}.

Hence, if |Q| + Max{No[p]|p ∈ R} ≤ |Qmax| holds, we need not continue the
search for R.

After Numbers (Colors) are assigned to all vertices in R, we sort the vertices
in ascending order with respect to their Numbers. We refer to the numbering
and sorting procedure as NUMBER-SORT [23]. In each step, select a vertex p
in R, beginning from the last (right) vertex and ending at the first (left) vertex.
As the result, a vertex with the maximum Number is selected in constant time
in each step. This is the reason why we sort the vertices in R with respect to
their Numbers.

Let Max{No[r]|r ∈ R} = maxno and Ci ={r ∈ R|No[r] = i}, where i =
1, 2, . . . , maxno. In other words, Ci is a set of vertices whose Number (Color)
is i. Thus, when the NUMBER-SORT has been applied to R, we have that
R = C1 ∪ C2 ∪ . . . ∪ Cmaxno , where the vertices in R are ordered in a manner
such that first appear the vertices in C1, and then the vertices in C2 follow, and
so on.

3.3 Initial Sorting and Initial Numbering
In the first stage of algorithm MCQ [24], which is a predecessor of MCR, vertices
are sorted in descending order with respect to their degrees and are assigned sim-
ple initial Numbers, At the beginning of MCR, vertices are sorted and assigned
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initial Numbers in a similar but more sophisticated manner. To be more pre-
cise, the steps from {SORT} to just above EXPAND(V, No) in Fig.4 (Algorithm
MCR) in [23] is named EXTENDED INITIAL SORT-NUMBER to V .

4 New Algorithm

4.1 New Approximate Coloring
Approximate coloring is generally quite effectively used in branch-and-bound al-
gorithms for finding a maximum clique. Here, we should note that the
minimization of the number of colors is not necessarily most important. It
is more important to reduce the number of vertices from which searching is nec-
essary. In this paper, we propose a new approximate coloring following greedy
approximate coloring in Sect. 3.2 along this line [10].

Because of the bounding condition mentioned in Sect. 3.2, if No[r] ≤ |Qmax|−
|Q|, then it is not necessary to search from vertex r. The number of vertices to
be searched can be reduced if the Number No[p] of vertex p for which No[p] >
|Qmax|− |Q| can be changed to a value less than or equal to |Qmax|− |Q|. When
we encounter such vertex p with No[p] > |Qmax|−|Q|, we attempt to change it’s
Number in the following manner. Let Nop denote the original value of No[p].

[Re-NUMBER p]

0) Let Noth := |Qmax| − |Q|. (Noth stands for Nothreshold.)
1) Attempt to find a vertex q in Γ (p) such that No[q] = k1 ≤ Noth, with

|Ck1 | = 1.
2) If such q is found, then attempt to find Number k2 such that no vertex in

Γ (q) has Number k2.
3) If such number k2 is found, then change the Number of q and p so that

No[q] = k2 and No[p] = k1.

(If no vertex q with Number k2 is found, nothing is done.)
When the vertex q with Number k2 is found, No[p] is changed from Nop to

k1 (≤ Noth); thus, it is no longer necessary to search from p.
The exact procedure Re-NUMBER is shown in Fig. 1. To save time, we use

it only when No[p] = maxno. The new approximate coloring is described in
the first part of Fig. 2 under the heading {NUMBER}; it can be seen that Re-
NUMBER follows the conventional greedy approximate coloring. The second
part of Fig. 2, under the heading {SORT}, describes the sorting of the vertices
in R in ascending order with respect to their Numbers (Refer to the end of
Sect. 3.2). Note that as shown in Fig. 2, vertex r with No[r] ≤ Noth need not
be sorted since the searching operation need not begin from r according to the
bounding condition.

In Fig. 2, assume that Va is identical to R for a while (until Va is introduced
in Sect. 4.2).

We employ the new procedure Re-NUMBER-SORT (in Fig. 2) instead of the
procedure NUMBER-SORT used in MCR [23] in order to make more effective
use of the bounding condition.
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procedure Re-NUMBER(p,Nop, Noth, C1, C2, ..., Cmaxno)
begin

for k1 := 1 to Noth − 1 do
if |Ck1 ∩ Γ (p)| =1 then

q := the element in (Ck1 ∩ Γ (p)) ;
for k2 := k1 + 1 to Noth do

if Ck2 ∩ Γ (q) = ∅ then
{Exchange the Numbers of p and q.}
CNop := CNop − {p};
Ck1 := (Ck1 − {q}) ∪ {p};
Ck2 := Ck2 ∪ {q};
return

fi
od

fi
od

end { of Re-NUMBER}
Fig. 1. Procedure Re-NUMBER

The time complexity of Re-NUMBER-SORT is O(|R|3), while that of
NUMBER-SORT [23] is O(|R|2). Here, |R| is the number of vertices of the
concerned subgraph G(R).

4.2 Adjunct Ordered Set of Vertices for Approximate Coloring

As noted in [7], [24], and [23], the ordering of vertices is crucial in algorithms for
finding a maximum clique. The result of approximate coloring greatly depends
on the order of vertices because sequential coloring is the main component in
the procedure. In MCR, the vertices are sorted in descending order mainly with
respect to their degrees. When Numbering procedures are applied, the vertices
are sorted in ascending order with respect to their Numbers, and the initial order
of the vertices with the same Number is inherited in the subsequent subprob-
lems [23]. However, the application of Re-NUMBER, which is described in Sect.
4.1, changes the Numbers of the vertices, thereby making the vertices disordered
with respect to their degrees. We can reduce the search space by sorting vertices
in R in descending order with respect to their degrees before every application of
approximate coloring. That is, the reduction of the search space is most effective
if the minimum possible Number is assigned to a vertex with the maximum de-
gree in each step of greedy approximate coloring [9], [20]. However, the sorting of
vertices is a computational burden and reduces the overall running time only for
dense graphs [20]. The aim of the present study is to develop a faster algorithm
whose use is not confined to any particular type of graphs. So, in addition to the
ordered set R of vertices, we simply introduce a new particular adjunct ordered
set Va of vertices that preserves the order of the vertices sorted in descending
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procedure Re-NUMBER-SORT(Va, R, No)
begin
{NUMBER}

maxno := 0;
C1 := ∅;
for i := 1 to |Va| do
{ Conventional greedy approximate coloring }
p := Va[i] ;
k := 1;
while Ck ∩ Γ (p) �= ∅

do k := k + 1 od
if k > maxno then

maxno := k;
Cmaxno := ∅

fi
Ck := Ck ∪ {p};
{ - Re-NUMBER starts - }
Noth := |Qmax| − |Q|;
if (k > Noth) and (k = maxno) then

Re-NUMBER(p, k, Noth, C1, C2, ..., Cmaxno) ;
if Cmaxno = ∅ then

maxno := maxno − 1
fi

fi
{ - Re-NUMBER ends - }

od
{SORT (vertices in R in ascending order w.r.t. their Numbers)}

i := |Va|;
if Noth < 0 then Noth := 0 fi
for k := maxno downto Noth + 1 do

for j := |Ck| downto 1 do
R[i] := Ck[j];
No[R[i]] := k;
i := i − 1

od
od
if i �= 0 then

R[i] := Ck−1[|Ck−1|];
No[R[i]] := Noth

fi
end { of Re-NUMBER-SORT }

Fig. 2. Procedure Re-NUMBER-SORT

order with respect to their degrees in the first stage [22]. We apply the procedure
Re-NUMBER-SORT shown in Fig. 2 to the vertices in Va, begining from the
first (left) vertex and ending at the last (right) vertex. Thus, we can avoid the
undesirable effect of Re-NUMBER.
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procedure MCS(G = (V, E))
begin

global Q := ∅; global Qmax := ∅;
{EXTENDED INITIAL SORT-NUMBER}
Apply EXTENDED INITIAL SORT-NUMBER to V (see Sect. 3.3);
Reconstruct the adjacency matrix as described in Sect. 4.3;
EXPAND (V, V, No);
output Qmax {Maximum clique}

end { of MCS }
procedure EXPAND(Va, R, No)
begin

while R �= ∅ do
p := the last vertex in R (i.e., a vertex with the maximum Number in R);
if |Q| + No[p] > |Qmax| then

Q := Q ∪ {p};
Vp := Va ∩ Γ (p); {preserving the order}
if Vp �= ∅ then
Re-NUMBER-SORT(Vp, newR, newNo);
{The initial values of newR and newNo have no significance}
EXPAND(Vp, newR, newNo)

else if |Q| > |Qmax| then Qmax := Q fi
fi

else return
fi
Q := Q − {p};
R := R − {p};
Va := Va − {p} {preserving the order}

od
end { of EXPAND }

Fig. 3. Algorithm MCS

As mentioned in Sect. 3.1, we select a vertex in the ordered set R for searching,
beginning from the last (right) vertex and continuing up to the first (left) vertex,
as shown in Fig. 3.

4.3 Reconstruction of the Adjacency Matrix
Each graph is stored as an adjacency matrix in the computer memory. Sequential
numbering in Re-NUMBER-SORT is carried out according to the initial order of
vertices in the adjunct ordered set Va, as described in Sect. 4.2. Taking this into
account, we rename the vertices of the graph and reconstruct the adjacency
matrix so that the vertices are consecutively ordered in a manner identical to the
initial order of vertices obtained at the beginning of MCR. The above-mentioned
reconstruction of the adjacency matrix results in a more effective use of the cache
memory since it facilitates the use of localized memory.

4.4 Algorithm MCS
The new algorithm obtained by introducing the techniques described in Sects. 4.1–
4.3 in MCR is named MCS and is shown in Fig. 3.
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4.5 Effectiveness of the Reduction of the Search Space

We confirm the effectiveness of the algorithm MCS in reducing the search space.
Some characteristic results of computational experiments conducted under the
conditions described in Sect. 5 (Computational experiments) for MCR and MCS
are listed in Table 1.

Table 1. Comparison of branches

Graph Branches × 10−3 CPU time
Name ω MCR MCS (MCR/MCS)b (MCR/MCS)t

r200.9 40–44 97,627 6,608 15 9
r200.95 58–66 104,801 2,735 38 22
r200.98 90–103 2,357 4 589 155
r300.98 120 4.03 × 106 31,619 127 108
r500.994 263 > 4.29 × 106 70 > 61, 286 > 256, 410
MANN a45 345 2,952 225 13 11
p hat500-3 50 138,300 7,923 18 12
p hat700-3 62 3,733,665 88,168 42 29
san400 0.9 1 100 74 2 37 28
gen200 p0.9 44 44 583 35 17 12
gen200 p0.9 55 55 2,335 112 21 13
gen400 p0.9 55 55 > 4.29 × 106 2,894,935 > 1.5 100
gen400 p0.9 65 55 > 4.29 × 106 3,332,982 > 1.3 > 66

Table 1 lists the number of branches, that is, the total number of EXPAND()
calls excluding the first call, of MCR and MCS for random graphs r200.9 –
r500.994 and several DIMACS benchmark graphs in the leftmost column. The
random graphs r200.9, r200.95, and r200.98 are graphs with 200 vertices and
with edge probabilities 0.9, 0.95, and 0.98, respectively. The number of branches
specified for r200.9 is the average over 10 graphs, and the number of branches
given for r200.95 and r200.98 is the average over 100 graphs. The second column
(ω) lists the ranges of the maximum clique sizes obtained.

In Table 1, the values for graphs with names of the form rn.p (n = 300, 500
and p = 0.98, 0.994) are obtained from one random graph with n vertices and
with edge probability p (4.29 × 109 = 232). The number of branches is related
to the size of the search space. The fifth column (MCR/MCS)b lists the ratio
of the number of branches of MCR to that of MCS.

The ratio of the CPU time required by MCR to that of MCS for each graph
is given in the last column (MCR/MCS)t for reference and has been obtained
from Tables 2 and 3 in Sect. 5.

Table 1 confirms that MCS is quite successful in reducing the search space. In
addition, we can see that the reduction of the search space by MCS effectively con-
tributes to the reduction of the running time. We have confirmed that the search
space of MCS is considerably smaller than that of MCR for all graphs in Sect. 5.
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5 Computational Experiments

We carried out computational experiments in order to demonstrate the overall
superiority of MCS over MCR. Both MCR and MCS were implemented in exactly
the same manner in the programming language C. The computer used, which
had a Linux operating system, is described in Appendix. We also executed the
DIMACS benchmark program dfmax [13], [14] as a standard. The computation
times for other algorithms are calibrated using the ratios shown in Appendix.

5.1 Results for Random Graphs

Random graphs are generated for each pair of n (number of vertices) and p (edge
probability) listed in Table 2. These graphs are generated such that there exists
an edge with probability p for each pair of vertices. The average CPU times [sec]
required to solve these graphs when using dfmax, MCR, and MCS are listed in
Table 2. The CPU times are averaged over 10 random graphs for each pair of
n and p. However, when the CPU time [sec] is greater than 105, the individual
value of the graph, instead of the average, is listed. The CPU times required
to solve the graphs with n ≤ 200 and p ≥ 0.95 are averaged over 100 graphs
because of the large variations in these graphs and the short running time of
MCR and MCS. For graphs with n ≥ 300 and p ≥ 0.9, the CPU time for only
one graph is considered for each pair of n and p (105 seconds 
 1.16 days, and
107 seconds 
 116 days). The third column (ω) lists the ranges of the sizes of
the maximum cliques obtained.

The calibrated CPU times for New [16] and COCR [18] are also listed for
reference. The boldface entries indicate the fastest time in the row. In Table 2,
it is observed that MCS is faster than MCR for all graphs. MCS is particularly
faster than MCR for dense graphs. MCS is the fastest for all the random graphs
listed in Table 2, except for that with [n = 200, p = 0.9]. For this exceptional
graph, COCR is approximately twice as fast as MCS. COCR is specially designed
for solving the maximum clique problem for dense graphs. For the graphs with
p ≥ 0.99 in Table 2, MCS is faster than MCR by a factor of greater than 100,000.

Regarding dfmax, it was stated in [14] that “It ... may be hard to beat on
sparser graphs, especially random ones.” Prior to the development of MCQ [24],
dfmax was widely recognized as the fastest maximum clique algorithm for sparse
graphs, as stated in [8] and [16]. MCQ and its successors are faster than dfmax,
even for sparse graphs. MCS is the only algorithm that is more than twice as
fast as dfmax for sparse graphs with 10,000 or more vertices (Table 2).

5.2 Results for DIMACS Benchmark Graphs

Table 3 lists the CPU times required by MCS and other algorithms to solve
the DIMACS benchmark graphs [13], where the calibrated CPU times for New
[16] and ILOG [17] are included for reference. In this table, density represents
the edge density of the graph. The boldface entries indicate the fastest time
among the times obtained within the time limits in the row. From this table, it is
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Table 2. CPU time[sec] for random graphs

Graph dfmax MCR MCS New COCR
n p ω [13] [23] [16] [18]

0.8 19-21 0.140 0.014 · 0.008 0.065 0.150
100 0.9 29-32 3.67 0.038 ◦ 0.013 0.663 0.196

0.95 39-48 23.736 0.011 ◦ 0.003 0.196
0.98 56-68 26.5401 0.0012 0.0009

0.8 23 6.88 0.55 ◦ 0.23 0.75
150 0.9 36-39 1058.96 5.26 1.00 1.16

0.95 50-59 37,436.79 3.94 � 0.35
0.98 73-85 > 105 0.243 �◦ 0.006

0.8 24-27 192.7 12.3 · 4.5 147.3 8.7
200 0.9 40-44 > 105 647 74 ◦ 37

0.95 58-66 > 105 1,272 �◦ 59
0.98 90-103 > 105 30.9 �� 0.2

0.6 15-16 144.1 1.4 1.0 3.5 5.0
0.7 19-21 26,236 23 · 12 121

300 0.8 28-29 > 105 1,264 ◦ 394
0.9 49 1,475,387 �◦ 62,607
0.98 120 284,534 �� 2,623

0.5 13-14 9.0 3.6 2.8 7.3 17.4
500 0.6 17 242 63 · 40 183

0.7 22-23 24,998 3,268 ◦ 1,539
0.994 263 > 1.5 × 107 > 107 ����� 39

0.4 12 33.3 16.1 13.2 23.2
0.5 15 1,107 395 290

1,000 0.6 19-20 106,776 24,986 · 15,317
0.66 23 555,089 ◦ 275,964
0.998 618 > 107 ����� 46

2,000 0.9995 1,453 > 107 ����� 61

0.1 7 6.3 5.3 · 3.3
5,000 0.2 9 259 197 138

0.3 12 14,008 8,668 5,818

10,000 0.1 7-8 137 100 · 60
0.2 10 9,417 8,055 · 4,389

15,000 0.1 8 793 511 · 327

20,000 0.1 8 2,665 1,737 1,179

Entries marked �����, ��,�◦, �, ◦, and · are respectively at least
100,000, 100, 20, 10, 2, and 1.5 times faster than any of the others in the
same row.

confirmed that MCS is almost always faster than MCR and the other algorithms
in Table 3.

MCS is almost always considerably faster than χ+DF [8], COCR [18], MIPO
[2], SQUEEZE [4], and Target [21] (see Table 4 in [23]). Although COCR is
specially designed to efficiently find a maximum clique in dense graphs, MCS
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Table 3. CPU time[sec] for DIMACS benchmark graphs (2)

Graphs dfmax MCR MCS New ILOG
Name n density ω [13] [23] [16] [17]

brock400 1 400 0.75 27 22,051 1,771 ◦ 693 8,401
brock400 2 400 0.75 29 13,519 726 ◦ 297 5,860
brock400 3 400 0.75 31 14,795 1,200 ◦ 468 3,316
brock400 4 400 0.75 33 10,633 639 ◦ 248 4,483
brock800 1 800 0.65 23 > 105 17,789 · 9,347 > 10, 667
brock800 2 800 0.65 24 > 105 16,048 · 8,368 > 10, 667
brock800 3 800 0.65 25 91,031 10,853 · 5,755 > 10, 667
brock800 4 800 0.65 26 78,737 7,539 · 3,997 > 10, 667
MANN a27 378 0.990 126 > 105 2.5 ◦ 0.8 > 2, 232 13.7
MANN a45 1,035 0.996 345 > 105 3,090 � 281 > 10, 667
p hat300-3 300 0.744 36 779.7 10.8 ◦ 2.5 30.2
p hat500-2 500 0.505 36 132.9 3.1 ◦ 0.7 95.7 24.2
p hat500-3 500 0.752 50 > 105 1,788 � 150 9,441
p hat700-2 700 0.498 44 5,299.9 44.4 • 5.6 189.5
p hat700-3 700 0.748 62 > 105 68,187 �◦ 2,392 > 10, 667
p hat1000-2 1,000 0.489 46 > 105 2,434 � 221 12,478
p hat1500-2 1,500 0.506 65 > 105 722,733 �◦ 16,512 > 10, 667
san200 0.9 1 200 0.900 70 > 105 1.20 0.22 ◦ 0.06 0.77
san200 0.9 2 200 0.900 60 > 105 4.2 ◦ 0.4 1.0 1.9
san400 0.7 1 400 0.700 40 > 105 1.76 ◦ 0.54 > 2, 232 17.2
san400 0.7 2 400 0.700 30 > 105 0.33 ◦ 0.13 112.97 50.0
san400 0.7 3 400 0.700 22 > 105 3.6 ◦ 1.4 202.4
san400 0.9 1 400 0.900 100 > 105 3.4 �◦ 0.1 1,259.3
san1000 1,000 0.502 15 > 105 4.8 2.1 �◦ 0.1 76.1
sanr200 0.7 200 0.702 18 3.06 0.57 · 0.34 3.15 3.2
sanr200 0.9 200 0.898 42 86,954 289 • 41 111
sanr400 0.7 400 0.700 21 2,426 379 ◦ 181 2,325
gen200 p0.9 44 200 0.900 44 48,262 5.39 � 0.47
gen200 p0.9 55 200 0.900 55 9,281.0 15.0 � 1.2
gen400 p0.9 55 400 0.900 55 5,846,951 �� 58,431
gen400 p0.9 65 400 0.900 65 > 107 �•151,597
gen400 p0.9 75 400 0.900 75 > 107 �◦294,175
C250.9 250 0.899 44 > 105 44,214 � 3,257

Entries marked ��,�•, �◦, �, •, ◦, and · are respectively at least
100, 50, 20, 10, 5, 2, 1.5 times faster than any of the others within
the time limits in the same row.

is faster than COCR by 3.5 times for MANN a27, whose density is very high
(density = 0.990). Further, MCS is confirmed to be much faster than MC of
Wood [26] and CP+SDP of Hoeve [11], as is evident in [17].

6 Concluding Remarks

Our new algorithm, MCS, retains the simplicity of our earlier algorithms while
further reducing the search space quite efficiently with low overhead ; hence, it
runs remarkably faster than MCR and the other algorithms.
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Owing to the page limitation of this paper, we cannot describe the details of
the individual contribution of techniques in Sects. 4.1-4.3, but it is noted that
effectiveness of MCS is established by the combination of all of these techniques.
For example, a single introduction of the new approximate coloring (in Sect. 4.1)
in MCR results in requiring more than 105 seconds to solve MANN a45 [10]. A
single introduction of the adjunct ordered set Va (in Sect. 4.2) in MCR is almost
always effective, but is not effective for MANN a45 [22].

Our present techniques can be useful for generating large maximal cliques
[25]. Some theoretical analysis of maximum-clique-finding algorithms is on the
way based upon [25] and [19].
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Appendix

Clique Benchmark Results

Type of Machine: Pentium4 3.6 GHz, Compiler and flags used: gcc -O2.
Our user time (T1) for DIMACS benchmark instances: r100.5, r200.5, r300.5,
r400.5, and r500.5 are 2.13×10−3, 6.35×10−2, 0.562, 3.48, and 13.3 seconds,
respectively. From Österg̊ard’s [16] user time (T2) and Sewell’s [18] user time
(T3) for the same instances, we obtained the average values of T2/T1 and T3/T1

as 4.48 and 86.76, respectively, in the same way as in [23]. For Régin’s [17] user
time (T5), we obtained the average value of T5/T1 to be 1.35 by referring to the
χ + DF (Fahle’s) [8] running time in [17].

http://www.cs.sunysb.edu/~algorith/implement/dimacs/distrib/color/graph/form
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